- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0001000000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Bhowmik, Tanmay (1)
-
Crowe, Sean (1)
-
Gudaparthi, Hemanth (1)
-
Haitz, Lisa (1)
-
Horton, Glen (1)
-
Liu, Hui (1)
-
Niu, Nan (1)
-
Savolainen, Juha (1)
-
Scherz, Thomas (1)
-
Wang, Boyang (1)
-
Zhang, Jianzhang (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Creativity focuses on the generation of novel and useful ideas. In this paper, we propose an approach to automatically generating creative requirements candidates via the adversarial examples resulted from applying small changes (perturbations) to the original requirements descriptions. We present an architecture where the perturbator and the classifier positively influence each other. Meanwhile, we ensure that each adversarial example is uniquely traceable to an existing feature of the software, instrumenting explainability. Our experimental evaluation of six datasets shows that around 20% adversarial shift rate is achievable. In addition, a human subject study demonstrates our results are more clear, novel, and useful than the requirements candidates outputted from a state-of-the-art machine learning method. To connect the creative requirements closer with software development, we collaborate with a software development team and show how our results can support behavior-driven development for a web app built by the team.more » « less
An official website of the United States government
